Instruction Manual

ThinkTop ${ }^{\circledR}$ DeviceNet $_{\text {TM }}$ 11-25 VDC

DeviceNet.

IM70826-GB4 2002-12

Declaration of Conformity

The designating company

Alfa Laval
Company Name
Albuen 31, DK-6000 Kolding, Denmark
Address
+45 79322200
Phone No.
hereby declare that

Top Unit for Valve Control \& Indication

Denomination
$\frac{\text { ThinkTop }^{\circledR} \text { DeviceNet }_{\text {TM }}}{\text { Type }}$
is in conformity with the following directives with amendments:

- Low Voltage Directive $73 / 23 / E E C$
- EMC Directive 89/336/EEC
Vice President, R\&D
Title
Alfa Laval
Company

Designation

C

1. Safety 6
1.1 Important information 6
1.2 Warning signs 6
1.3 Safety precautions 6
2. General information 7
2.1 DeviceNet in general 7
3. Technical specifications 8
3.1 ThinkTop ${ }^{\circledR}$ DeviceNet features 9
4. Installation 17
4.1 Installation on air actuators 17
4.2 Installation on Series 700 valves 20
4.3 Air connections 21
4.4 Electrical connection, internal 22
5. Setup diagram 24
5.1 ThinkTop ${ }^{\circledR}$ setup utilising \mathbb{R} keypad 24
5.2 ThinkTop ${ }^{\circledR}$ setup utilising local 'I' and 'Il' keys 26
6. Fault finding 28
6.1 Fault finding and LEDs 28
7. Maintenance 30
7.1 Dismantling of ThinkTop ${ }^{\text {® }}$ 30
7.2 Assembly of ThinkTop ${ }^{\text {® }}$ 32
7.3 Dismantling and assembly of Series 700 valves 34
8. Parts list 36
8.1 ThinkTop ${ }^{\circledR}$ DeviceNet $_{T M}$ 11-25 VDC 36
8.2 ThinkTop ${ }^{\circledR}$ Series 700 valves 38

1.3 Safety precautions

Unsafe practices and other important information are emphasized in this manual.
Wamings are emphasized by means of special signs.
All warnings in the manual are summarized on this page.
Pay special attention to the instructions below so that severe personal injury or damage to the top unit are avoided.

Always read the manual before using the top unit!

WARNING!

Indicates that special procedures must be followed to avoid severe personal injury.

CAUTION!

Indicates that special procedures must be followed to avoid damage to the ThinkTop ${ }^{\circledR}$.

NOTE!

Indic ates important information to simplify or clarify practices.

General warning:

Dangerous electrical voltage:

Caustic agents:

Installation

- Always observe the technic al specific ations (see chapter 3).
- Never install the ThinkTop ${ }^{\circledR}$ before valve or relay is in a safe position.

- If welding close to the ThinkTop ${ }^{\text {® }}$: Always earth close to the welding area.
- Disconnect the ThinkTop ${ }^{\text {® }}$.
- Always have the ThinkTop ${ }^{\circledR}$ electric ally connected by authorized personnel.

Maintenance

- Always read the technic al specific ations thoroughly (see chapter 3).
- Always fit the seals between valve and ThinkTop ${ }^{\otimes}$ correctly.

- Never service the ThinkTop ${ }^{\circledR}$ before valve or relay is in a safe position.
- Never service the ThinkTop ${ }^{\circledR}$ with valve/actuator under pressure.
- Never clean the ThinkTop ${ }^{\circledR}$ with high pressure cleaning equipment.
- Never use cleaning agents when cleaning the ThinkTop ${ }^{\circledR}$. Check with cleaning agent supplier.

Abstract

DeviceNet is a low-cost communication link to connect industrial devices (such as limit switches, photoelectrical sensors, valve manifolds, motor starters, process sensors, bar code readers, variable frequency drives, panel displays and operator interfaces) to a network and eliminate expensive hardwiring. The direct connectivity provides improved communication between devices as well as important device-level diagnostics not easily accessible or available through hardwired I/O interfaces. DeviceNet is a simple networking solution that reduces costs as well as time to wire and install industrial automation devices, while providing interchangeability of similar components from multiple vendors.

DeviceNet is an open network standard.

DeviceNet Features and Functionality:

Network Size	Up to 63 nodes	
Network Length	Selectable end-to-end network distance varies with speed	
	Baud Rate 125 Kbps 250 Kbps 500 Kbps	Distance $\begin{aligned} & 500 \mathrm{~m}(1,640 \mathrm{ft}) \\ & 250 \mathrm{~m}(820 \mathrm{ft}) \\ & 100 \mathrm{~m}(328 \mathrm{ft}) \end{aligned}$
Data Packets	0-8 bytes	
Bus Topology	Linear (trunk line/drop line); power and signal on the same network cable	
Bus Addressing	Peer-to-Peer with Multi-Cast (one-to-many); Multi-Master and Master/Slave special case; polled or change-of-state (exception-based)	
System Features	Removal and replacement of devices from the network under power	

The basic trunk line/drop line topology provides separate twisted pair busses for both signal and power distribution. Thick or thin cable can be used for either trunk lines or drop lines. End-to-end network distance varies with data rate and cable size.

Data Rates	125 Kbps	250 Kbps	500 Kbps
Thick Trunk Length	$500 \mathrm{~m}(1,640 \mathrm{ft})$	$250 \mathrm{~m}(820 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$
Thin Trunk Length	$100 \mathrm{~m}(328 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$	$100 \mathrm{~m}(328 \mathrm{ft})$
Maximum Drop Length	$6 \mathrm{~m}(20 \mathrm{ft})$	$6 \mathrm{~m} \mathrm{(20} \mathrm{ft)}$	$6 \mathrm{~m}(20 \mathrm{ft})$
Cumulative Drop Length	$156 \mathrm{~m}(512 \mathrm{ft})$	$78 \mathrm{~m} \mathrm{(256ft)}$	$39 \mathrm{~m}(128 \mathrm{ft})$

The end-to-end network distance varies with data rate and cable thickness.
DeviceNet requires a terminating resistor to be installed at each end of the trunk:

- 121 ohm
- 1% metal film
- 1/4 Watt

Terminating resistors should not be installed at the end of a drop line, only at the two ends of the trunk line.
For further information please see the DeviceNet Standard.

DeviceNet Features

Device Type	Generic	Master/scanner	N
Explicit peer to peer messaging	N	I/O Slave messaging	
I/O peer to peer messaging	N	• Bit strobe	N
Configuration consistency value	N	• Polling	Y
Faulted node recovery	N	• Cyclic	N
Baud rates	$125 \mathrm{~K}, 250 \mathrm{~K}, 500 \mathrm{~K}$	• Change of state (COS)	Y
Configuration method	EDS		

Special DeviceNet functions

Class 100 Attributes

- Setup commands
- Time to maintenance
- Open count
- Configuration
- Last stroke travel time
- Closed count
- Alarm setup
- Last stroke travel length (mm)
- Time of last maintenance
- Time Total
- Current position [mm] (0-80 mm)
- Time Closed
- Activation's solenoid no. 1
- Time Open
- Activation's solenoid no. 2
- Activation's solenoid no. 3

See also section 3.1.4 "ThinkTop ${ }^{\circledR}$ DeviceNet Attribute List".

DeviceNet interface

Baud rates: 125k, 250K and 500k.
Polling and change of state (COS)I/O slave messaging.
Poll: 7 or 2 bytes (optional).
2 bytes $=$ Input/outputs and alarms (class 4).
7 bytes = Input/outputs alarms and class 100/attributes.
7 bytes is standard.
Changing from 7 bytes to 2 bytes: remove jumper (\#12 and \#13). A power recycle is necessary when changing byte sizes.
COS: 2 bytes, 7 bytes is not supported.

Node address

Range: 0-63.
Default slave address: 63.

Powersupply

The power supply to the complete unit is taken from the DeviceNet.
Supply voltage: $11-25 \mathrm{~V}$ DC, as specified for the DeviceNet.
Supply current: \quad Max. 45 mA (for sensor unit alone)
(excluding current to the solenoids and the external proximity switches).
Electrical connection: Direct cable gland entry (hard wired) PG11 (\varnothing - $\varnothing 10 \mathrm{~mm}$).

3.1.1 "No Touch" sensor system

Type: Alfa Laval "No Touch" Sensor System
For wire connections: See section 4.4 "Electric al connection, internal".

Features

Tolerance programmes.
Self adjustment programme (SRC/ARC valves only).
Built-in maintenance monitor.
Setup by internal pushbuttons or remote control (IR Keypad).
Setup and local fault supervision.
Setup saved at power shutdown.
Visual LED Indicator lights.

Sensor System

Unique "No Touch" sensor system without any mechanical sensor adjustments. A magnet is mounted on the valve stem and the magnetic field (axial) is detected by sensor chips inside the sensor unit. The measuring angle from each chip is used to locate the current position of the valve stem with an accuracy of $\pm 0.1 \mathrm{~mm}$. Note that the distance to the magnet can be $5 \mathrm{~mm} \pm 3 \mathrm{~mm}$.

Feedback signals

Input signals (produced by the sensor unit) transmitted over the DeviceNet - class 4.
Five feedback signals: Closed valve, open valve, seatlift 1, seatlift 2 and status.
The status signal is used for five purposes:

- To indicate that a setup is in progress (LED D).
- To indicate an error condition (LED D), (flashing = software error), (steady = hardware error).
- To indicate that maintenance is required (LED F).
- To indicate if there is a conflict in the self adjustment programme (LED F).
- To indicate if no communication exists between ThinkTop ${ }^{\circledR}$ and PLC (LED D, steady).

Tolerance programme:

Individual according to valve types.

- Type 1: \quad SRC/ARC and Series 700 valves.
- Type 2: LKB (LKLA-T).
- Type 3: Unique, SMP-SC Spillage-Free, SRC-PV and AMP.
- Type 4: SMP-SC, SMP-TO, SMP-BC, SMP-BCA and SBV.
- Type 0: (Preset) All Parameters Set To Default (also valid for MH Koltek valve and SMP-EC (*) seat-lift indication not possible for SMP-EC)).
Preset and reset values: Tolerance programme No. $0(\pm 5 \mathrm{~mm})$ and all functions are disabled.
NOTE! Important to select the right tolerance programme.

Self Adjustment (SRC/ARC valves only)

The self adjustment feature is an exceptional aspect of the ThinkTop ${ }^{\circledR}$ design. A programme can be activated to allow an adjustment of the tolerance band if the seals in the valve are being compressed or are worn. When the tolerance band of the unit has been adjusted 0.3 mm , an alert warning will appear in the form of a status signal and a flashing maintenance LED. After 0.5 mm adjustment an alarm warning appears: Loss of feedback signal, status signal and steady maintenance light indic ating a minimum of seal left requiring a replacement of the seal.

Built-in Maintenance Monitor

The unit can be preset to indic ate when the time for maintenance of the valve has been reached. A status signal and flashing maintenance LED can be programmed to return after $3,6,9$ or 12 months or more.

Sensor system

Sensor accuracy: $\pm 0,1 \mathrm{~mm}$.
Distance to magnet: $5 \pm 3 \mathrm{~mm}$.
Stroke length: $0.1-80 \mathrm{~mm}$.

Terminals

The terminal row of the sensor unit is equipped with screw terminals for both internal as well as external cables and wires.
The terminals are suitable for wires up to $0.75 \mathrm{~mm}^{2}$ (AWG 19).

External sensors

The external sensors are used for seatlift supervision when seatlift cannot be internally detected. The sensors get their supply voltage from the sensor unit. They connect directly to the terminal strip on the sensor unit. If the actual setup is for internal seatlift, the corresponding external signal is not used. Otherwise the external signal logically controls the corresponding feedback to the bus interface unit.
Supply voltage: Must match the network power.
Supply current: Max. 15 mA per sensor.
Type of sensor: 3 -wire PNP-type.
Cable length: Max. 3 m .

Alarm mask

Output signals received from the DeviceNet (consumed by the sensor unit).
Four-bit mask to disable the alarm functions for the states "closed", "open", "seatlift 1" and "seatlift 2" respectively.
See also section 3.1.4 "ThinkTop® DeviceNet Attribute List".

LED Indications

"Open valve"	(Yellow)
IR-Receiver	
"Setup/Internal fault"	(Red)
"Seat-lift 1/2"	(Yellow)
"Solenoid valves"	(Green)
"Maintenance"	(Orange)
"Closed valve"	(Yellow)

Feedback signals:

Signal: "Closed valve".
Signal: "Open valve".
Signal: "Seatlift 1".
Signal: "Seatlift 2".
Signal: "Status".
For wire connections: see section 4.4 "Electrical connection, internal".
Note: If the programmer wishes to detect a physically closed valve position in an "open valve" sensor position, then there is no longer any consistence between the sensor valve detection position and the visual indications of the ThinkTop ${ }^{\circledR}$.

3.1.2 Technical specifications solenoid valves

Solenoid signals

Output signals received from the DeviceNet (consumed by the sensor unit) - class 4.
Three bits to control the solenoid drives located in the sensor unit.
Internal connections (solenoids)
The solenoid drivers are reducing the solenoid power by PWM after activation. The number of solenoids actually mounted in the control head could be 0-3.

Technical specifications

Up to 3 solenoid valves in each unit.
Type $\quad 3 / 2$ or $5 / 2$ valve (only possible with one $5 / 2$ valve).

Air supply
Filtered air, max. particles or dirt
Max. flow
Max. oil content
Max. water content
Throughput
Air restriction (throttle function) air inlet/outlet.
Manual hold override.
External air tube connection $\quad \varnothing 6 \mathrm{~mm}$ or $1 / 4$ " (specify when ordering).
Silencer/filter *)
$300-900 \mathrm{kPa}$ (3-9 bar).
0.01 mm .
$180 \mathrm{l} / \mathrm{min}$.
1.0 ppm .
$0.0075 \mathrm{~kg} / \mathrm{kg}$ air.
$\varnothing 2.5 \mathrm{~mm}$.

Connection possible via $\varnothing 6 \mathrm{~mm}$ or $1 / 4$ ".

Solenoid drive

Solenoid valve 8 VDC

O/P Voltage
Power consumption
Current consumption (per solenoid)
PWM Pull-in pulse length
PWM duty cycle
PWM frequency
PWM = Pulse width modulated
*) Note! Filter recommended in tropical regions.

3.1.2.1 Technical specifications aux. outputs

Three aux. outputs can be used for external devices. The drivers are always NPN outputs and PWM mode is not possible. The number of aux. outputs for activation of external devices can be 0-3. Clarification: All 3 outputs can be activated at the same time but if solenoid 1 is in use, aux. 1 can not be used! If solenoid 1 and 2 are in use, aux. 1 and 2 can not be used! If solenoid 1,2 and 3 are in use, no aux. can be used! A mix of solenoid and aux. outputs is possible.

Output: NPN (sinking).
Output voltage: $\quad 24$ VDC $\pm 15 \%$. Network power connection! User must ensure 24 VDC on the network (at the top) when these outputs are used.
Load current: Max 75 mA .
As these outputs drive constant current, using several nodes in this mode will reduce the number of nodes supported by a typical 8A network supply. The user must ensure that total network current consumption is less than the supply rating.

3.1.3 ThinkTop ${ }^{\circledR}$, EDS file

Please see web address www.odva.org for further information and for downloading the EDS file or contact your Alfa Laval company.

3.1.5 ThinkTop ${ }^{\otimes}$ DeviceNet bit mappings

PLC_Image (feedbacks)	Travel in progress 0	Alarm timer expired 0	x	Maint. 0	$\overline{S L 2}$ 0	SL1 0	OPEN 0	CLOSED 0
LED_Image	x	x	$\begin{gathered} \text { CLOSED } \\ 0 \end{gathered}$	$\begin{gathered} \text { Maint. } \\ 0 \end{gathered}$	$\begin{gathered} \text { Coil } \\ 0 \end{gathered}$	$\begin{aligned} & \text { Seat Lift } \\ & 0 \end{aligned}$	$\begin{gathered} \text { Setup } \\ 0 \end{gathered}$	$\begin{gathered} \text { OPEN } \\ 0 \end{gathered}$
Error_Byte	Multiple coil request 0	Actuation Timeout 0	Button II failure 0	Button I failure 0	Tx/Rx Failure 0	Bus Offline 0	Position Over Range	Check Sum Error 0
ASI_Data (0..3)	x	x	x	x	Coil \#3 0	Coil \#2 0	Coil \#1 0	x
Adjust_Status	CLOSED Alarm frozen	CLOSED Alert frozen x	OPEN Alarm frozen x	OPEN Alert frozen x	CLOSED Alarm 0	CLOSED Alert 0	OPEN Alarm 0	OPEN Alert x
Travel_Status	Travel In Progress 0	x	x	x	x	x	x	x
Alarm_Status	Timer Running 0	Timeout on last command 0	Alarm \#6 active 0	Alarm \#5 0	Alarm \#4 0	Alarm \#3 0	Alarm \#2 0	Alarm \#1 0
Alarm Entry (1..6) End condition:	Steady 0/x	X	x	X	$\begin{gathered} \text { SL2 } \\ 1 \end{gathered}$	$\begin{gathered} \text { SL1 } \\ 1 \end{gathered}$	$\begin{gathered} \text { OPEN } \\ 1 \end{gathered}$	$\begin{gathered} \text { CLOSED } \\ 1 \end{gathered}$
Time: $\mathrm{LSB}=0.524 \mathrm{sec} .$	$\begin{gathered} 67,1 \\ 0 \end{gathered}$	$\begin{gathered} 33,5 \\ 0 \end{gathered}$	$\begin{gathered} 16,8 \\ 0 \end{gathered}$	$\begin{gathered} 8,4 \\ 0 \end{gathered}$	$\begin{gathered} 4,2 \\ 0 \end{gathered}$	$\begin{gathered} 2,1 \\ 0 \end{gathered}$	$\begin{gathered} 1,0 \\ 0 \end{gathered}$	$\begin{gathered} 0,5 \\ 0 \end{gathered}$
Alarm Mask	X	X	Coil \#3 falling, enabled 1	Coil \#2 falling, enabled 1	Coil \#1 falling, enabled 1	Coil \#3 rising, enabled	Coil \#2 rising, enabled 1	Coil \#1 rising, enabled 1
Travel Mask	x	x	Coil \#3 falling, disabled	Coil \#2 falling, disabled 1	Coil \#1 falling, disabled	Coil \#3 rising, disabled	Coil \#2 rising, disabled 1	Coil \#1 rising, disabled

3.1.6 ThinkTop ${ }^{\circledR}$ DeviceNet Poll and COS command structures

Poll Request Message Format

	bit							
byte	7	6	5	4	3	2	1	0
0	x	x	x	x	coil\#3 energize	coil \#2 energize	coil \#1 energize	x
1	x	x	alarm \#6 enable	alarm \#5 enable	alarm \#4 enable	alarm \#3 enable	alarm \#2 enable	alarm \#1 enable
2	Write Attrib. Flag	Requested index for Class \#100 attribute. Note: The index is 0 -relative based on attribute ID \#100						
3		Attribute Data Byte 0 - LSB						
4		Attribute Data Byte 1						
5		Attribute Data Byte 2						
6		Attribute Data Byte 3 - MSB						

Poll Response Message Format

	bit							
byte	7	6	5	4	3	2	1	0
0	Travel in Progress	Timer Expired	x	MAINT. ERROR	Seat \#2 Status	Seat \#1 Status	OPEN Status	CLOSED Status
1	Timer Running	Timer Expired	alarm \#6 active	alarm \#5 active	alarm \#4 active	alarm \#3 active	alarm \#2 active	alarm \#1 active
2	Valid Data Flag	Requested index for Class \#100 attribute. Note: The index is 0 -relative based on attribute ID \#100						
3	Attribute Data Byte 0 - LSB							
4	Attribute Data Byte 1							
5	Attribute Data Byte 2							
6	Attribute Data Byte 3 - MSB							

Note! The 2 bytes Poll command structure is the same as the 7 bytes command with only bytes 0,1 used.

COS command structure

COS Request Message

By definition the COS and Poll Request Messages are identical. For a device configured for a 7 bytes Poll, the corresponding COS request will be:

bit								
byte	7	6	5	4	3	2	1	0
0	x	x	x	x	coil\#3 energize	coil \#2 energize	coil \#1 energize	x
1	x	x	alarm \#6 enable	alarm \#5 enable	alarm \#4 enable	alarm \#3 enable	alarm \#2 enable	alarm \#1 enable
2	Write Attrib. Flag	Requested index for Class \#100 attribute. Note: The index is 0 -relative based on attribute ID \#100						
3		Attribute Data Byte 0 - LSB						
4		Attribute Data Byte 1						
5		Attribute Data Byte 2						
6		Attribute Data Byte 3-MSB						

For a device configured for a 2 bytes Poll, the corresponding COS request will be

	7	6	5	4	3	2	1	0
byte	x	x	x	x	Coil \#3 energize	Coil \#2 energize	Coil \#1 energize	x
1	x	x	alarm \#6 enable	alarm \#5 enable	alarm \#4 enable	alarm \#3 enable	alarm \#2 enable	alarm \#1 enable

COS Response Message:

Only a 2 bytes message is supported and corresponds to the 2 bytes Poll response message format

				bit				
byte	7	6	5	4	3	2	1	0
0	Travel in Progress	Timer Expired	x	MAINT. ERROR	Seat \#2 Status	Seat \#1 Status	OPEN Status	CLOSED status
	Timer Running	Timer Expired	alarm \#6 active	alarm \#5 active	alarm \#4 active	alarm \#3 active	alarm \#2 active	alarm \#1 active

Note! A 7 bytes COS response message is not supported.

COS Trigger:

The COS message is triggered by any change in the Valve Value (feedbacks) corresponding to byte-0 of the COS response message

3.1.7 Typical power consumption

Test conditions: One ThinkTop ${ }^{\circledR}$ DeviceNet 11-25 VDC connected to the network with 1 input (on) and:

No solenoids on	supply voltage 25 VDC supply voltage 25 VDC	20 mA
1 solenoid active (PWM)	28 mA	
2 solenoids active (PWM)		
supply voltage 25 VDC		
solenoids active (PWM)	36 mA	
supply voltage 25 VDC	44 mA	
No solenoids on	supply voltage 11 VDC	34 mA
1 solenoid active (PWM)	supply voltage 11 VDC 2 solenoids active (PWM) supply voltage 11 VDC	58 mA
3 solenoids active (PWM)		
supply voltage 11 VDC	106 mA	

Note: If the Aux. Outputs are used instead of the solenoids for activation of external devices, the consumption is depending on the load current (see "Aux. Outputs").

3.1.8 Materials

Plastic parts Nylon PA12.
Steel parts Stainless steel AISI 304 and 316.
Seals FPM (air fitings), EPDM rubber for SMP-EC stem.

3.1.9 Micro environment demand specifications

Temperature		
Working:	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	IEC 68-2-1/2
Storage:	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	IEC 68-2-1/2
Temperature change:	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	IEC 68-2-14
Vibration	$\begin{aligned} & 10-55 \mathrm{~Hz}, 0.7 \mathrm{~mm} \\ & 55-500 \mathrm{~Hz}, 10 \mathrm{~g} \\ & 3 \times 30 \mathrm{~min}, 1 \text { octave } / \mathrm{min} \end{aligned}$	IEC 68-2-6
Drop test		IEC 68-2-32
Humidity Constant humidity: Cyclic humidity: (working)	$\begin{aligned} & +40^{\circ} \mathrm{C}, 21 \text { days, } 93 \% \text { R.H. } \\ & +25^{\circ} \mathrm{C} /+55^{\circ} \mathrm{C} \\ & 12 \text { cycles } \\ & 93 \% \text { R.H. } \end{aligned}$	$\begin{aligned} & \text { IEC 68-2-3 } \\ & \text { IEC 68-2-30 } \end{aligned}$
Protection class	IP67	IEC 529
Input threshold Voltage/current:	Type 1 input requirements	EN 61131-2
EMC Directive	89/336/EEC	EN 50081-1, EN 50082-2
ODVA Approval	DeviceNet v. 2.0	Conformance Test version 14
UL Approval	8-30 VAC/VDC, Class 2 input, 45 mA max. output	UL508-E203255

Step 1

1

- Always read the technical specifications thoroughly (see chapter 3).
- Always have the ThinkTop ${ }^{\circledR}$ electric ally connected by authorized personnel.
- Never install the ThinkTop ${ }^{\circledR}$ before valve or relay is in a safe position.

Step 2

1. Fit the air fittings on actuator if not mounted.
2. Fit the activator stem (magnet) and tighten carefully with a spanner.

NOTE!

The ThinkTop ${ }^{\circledR}$ for the SMP-EC valve has a longer activator stem going through the shell. Remember O-ring.

Step 3

1. Place the ThinkTop ${ }^{\circledR}$ on top of the actuator.
2. Make sure X-ring is mounted.

Step 4

1. Ensure that the unit is correctly mounted by pressing down on Top of the ThinkTop ${ }^{\circledR}$.
2. Tighten the two Allen screws carefully.
3. Turn the actuator to have LEDs in a front view.

NOTE!

After a relevant period of time after installation (eg. two weeks) it is recommended to check that all connections are properly tightened.

Step 5

Fit the $\varnothing 6 \mathrm{~mm}\left(1 / 4\right.$ ") air tubes to ThinkTop ${ }^{\circledR}$ (see drawing "Air connections" later in this chapter).

Step 6

Fit the air tubes to the actuator (see drawing "Air connections" later in this chapter).

Step 7
Untighten the three screws and pull off cover of ThinkTop ${ }^{\circledR}$.

Step 8

1. Install cable (if not present) through the cable gland.
2. Connect the ThinkTop ${ }^{\text {® }}$ electrically (see section 4.4
"Electrical connection, internal").

Step 9

Make sure the cable gland is completely tightened.

Step 10
Set up the ThinkTop ${ }^{\circledR}$ (see chapter 5).

NOTE!

The unit can be set up with the cover installed by using the IR keypad. To energize the valve, use a separate air tube or be in radio contact with the control room.

Step 1

1. Remove the cover by loosening the three cross recess screws.
2. Separate the adapter from the base by loosening the three recess screws on top of the base.

Installation on airactuators:

Step 2

1. Fit air fittings on actuator.
2. Position packing retainer in recess on actuator top.
3. Fit counter nut and indicator (magnet) on actuator rod. Engage approx. $1 / 4$ " thread. Tighten counter nut and indic ator with two wrenches.

Step 3

1. Place the two 0 -rings in the grooves in the bottom of the adapter. Then place the adapter on the actuator top. The small 0 -ring must be positioned over the air hole on the actuator.
2. Fasten the adapter with the four $5 / 16^{\prime \prime}$ Allen screws.

Step 4

Mount the base on the adapter in the position needed (can be rotated 120° in both directions). Note that one of the screw towers on the adapter has a guide recess (see \star on drawing).

*) Note!

- Terminals 24, 25, 26 and 27 can be used for external seatlift sensors as well as for any digital input. They are associated with feedback signal 3 (seatlift 1) and 4 (seatlift 2). External sensor must always be a 8-30 VDC PNP 3 wire sensor. Connect $(-)$ common on terminal 27, and (+) common on terminal 26.

**) Note!

J umper present = 7 I/O bytes; Rx size 7 and Tx size 7 - standard.
Changing from 7 bytes to 2 bytes: Remove jumper (\#12 and \#13). A power recycle is necessary when changing byte sizes.

**) Note!

Three aux. outputs can be used for extemal devices. The drivers are always NPN outputs and PWM mode is not possible. The number of aux. outputs for activation of external devices can be 0-3. Clarific ation: All 3 outputs can be activated at the same time but if solenoid 1 is in use, aux. 1 can not be used! If solenoid 1 and 2 are in use, aux. 1 and 2 can not be used!
If solenoid 1,2 and 3 are in use, no aux. can be used! A mix of solenoid and aux. outputs is possible.
Output: NPN (sinking).
Output voltage: 24 VDC $\pm 15 \%$. Network power connection! User must ensure 24 VDC on the network (at the top) when these outputs are used.
Load current: Max 75 mA .
As these outputs drive constant current, using several nodes in this mode will reduce the number of nodes supported by a typical 8 A network supply. The user must ensure that total network current consumption is less than the supply rating.

Notes: 0 - Scrollacross, no change
\qquad - Notes Requires Key Function
— — - - Notes Automatic Progress as Indicated
General: 1. Flashing IND means no value set.
Steady IND means value set as shown.
2. Default is: Step 2, Type $0(+/-5 \mathrm{~mm})$

Step 3-8 disabled
3. Lamp Status Shown in []

ThinkTop ${ }^{\circledR}$ Visual Indications LED Indications

"Open valve"	(Yellow)
IR-Receiver	
"Setup/Internal fault"	(Red)
"Seat-lift 1/2"	(Yellow)
"Solenoid valves"	(Green)
"Maintenance"	(Orange)
"Closed valve"	(Yellow)

4. [D] IND active during set-up.

- Flashing in step 1,
- Steady in all other steps. or during operations, error condition
- Steady showing hardware fault
- Flashing showing software fault

5. Timeout: A 60 second time-out is started as soon as any button(s) are released.

If no button is pressed during the time-out time, go to normal condition (cancel \& exit).
6. SRC/ARC valves: Self-adjust (step 7) must be activated. If you choose NOT to use the self-adjustment programme, Alfa Laval recommends to use the valve type 4 (step 2), instead of type 1 (bigger tolerances).

Note! Remote distance keypad $=$ ThinkTop ${ }^{\circledR}$ 0-300 mm.

Notes: |

- Scrollacross, no change
— — — - \quad Notes Automatic Progress as Indicated
General: 1. Flashing IND means no value set. Steady IND means value set as shown.

2. Default is: Step 2, Type $0(+/-5 \mathrm{~mm})$

Step 3-8 disabled
3. Lamp Status Shown in []

ThinkTop ${ }^{\circledR}$ Visual Indications LED Indications

"Open valve"	(Yellow)
IR-Receiver	
"Setup/Internal fault"	(Red)
"Seat-lift 1/2"	(Yellow)
"Solenoid valves"	(Green)
"Maintenance"	(Orange)
"Closed valve"	(Yellow)

4. [D] IND active during set-up.

- Flashing in step 1,
- Steady in all other steps.
or during operations, error condition
- Steady showing hardware fault
- Flashing showing software fault

5. Timeout: A 60 second time-out is started as soon as any button(s) are released.

If no button is pressed during the time-out time, go to normal condition (cancel \& exit).
6. SRC/ARC valves: Self-adjust (step 7) must be activated. If you choose NOT to use the self-adjustment programme, Alfa Laval recommends to use the valve type 4 (step 2), instead of type 1 (bigger tolerances).

\qquad
\qquad

Below is stated the meaning of the LEDs' indications for fault finding in connection with the operation of the ThinkTop ${ }^{\circledR}$.

Red flashing:	Unit in set-up mode or internal software fault. If internal software fault, re-programme unit.
Unit in set-up mode or internal hardware fault.	

Time for maintenance has run out.
The unit has been self-adjusted into a maintenance alert condition. Valve maintenance is strongly recommended. After maintenance: Disabling of maintenance/self-adjustment function is required before setting new position, however, it is strongly recommended to make a complete new set-up after valve maintenance.

NOTE! The maintenance indicator lighting up, and an open or closed light

 flashing.....= Note the following:

- Self-adjustment programme is only valid for SRC/ARC valves, do not use the programme for other valve types.
- Use tolerance/valve type 1.
- In conjunction with valve type change-over; 21,22, 31 and 32, the open position must be defined as the upper sensor position (when the magnet is in the highest position).
- A loose top, magnet holder or sensor system can also generate the alert/ alarm condition.
- Removing a ThinkTop ${ }^{\circledR}$ with self-adjust activated, will immediately generate an alarm condition! If the ThinkTop ${ }^{\circledR}$ has to be removed, not because of a valve maintenance issue, but for some other reasons, and you want to store the already adjusted data - disable the self-adjust function before removing the ThinkTop ${ }^{\circledR}$ and enable it again once the ThinkTop ${ }^{\circledR}$ is back on the actuator.
- After valve maintenance a disabling of the self-adjustment function is required before setting a new position, however, it is strongly recommended to make a complete new set-up (disable all functions in step 2 valve type and make a complete new set-up).
\qquad
\square

Yellow A
to soo-064

Yellow C Yellow steady: Position C (Seat lift 1-2 or external sensors).

Green E
Green steady: Solenoid valves activated.

Note! During set-up LED lights have different functions.

Study the instructions carefully.
Handle scrap correctly.
Always keep spare X-rings in stock.

Step 1

1. Remove the ThinkTop ${ }^{\circledR}$ from the actuator.
2. Pull out X-ring and replace it.

Step 2

1. Untighten the three screws.
2. Pull off the ThinkTop ${ }^{\circledR}$ cover.

Step 3

1. Untighten screws.
2. Remove solenoid valves (up to 3) and replace them with new ones.

Step 4

1. To dismantle the adapter (the lower part of the ThinkTop ${ }^{\circledR}$)
from base (the middle part), unscrew the three screws.
2. Turn the lower part a little clockwise and pull.
3. Replace adapter if necessary.

Study the instructions carefully.
Handle scrap correctly.
Always keep spare X-rings in stock.

Step 5

To remove the sensor unit untighten screw and pull out the sensor unit.

Study the instructions carefully.
Handle scrap correctly.
Always keep spare X-rings in stock.

Step 1

Place sensor unit in base and tighten screw (torque: 1 Nm).

Step 2

Assemble base with adapter by turning adapter a little anticlockwise and tighten the three screws (1.9 Nm).

Note:
Turn banjo connection!

Step 3

1. Replace solenoid valves (up to three) with new ones.
2. Tighten screws $(0.2 \mathrm{Nm})$.

Step 4

Replace cover of ThinkTop ${ }^{\circledR}$ and tighten the three screws (0.6 Nm).

Study the instructions carefully.
Handle scrap correctly.
Always keep spare X-rings in stock.

Step 5

1. Replace X-ring.
2. Mount the ThinkTop ${ }^{\otimes}$ on actuator.

Study the instructions carefully.
Handle scrap correctly.
Always keep spare X-rings in stock.

Step 1

1. Remove the cover by loosening the three cross recess screws.
2. Separate the adapter from the base by loosening the three recess screws on top of the base.

Installation on

 air actuators:

Step 2

1. Fit air fittings on actuator.
2. Position packing retainer in recess on actuator top.
3. Fit counter nut and indicator (magnet) on actuator rod. Engage approx. $1 / 4$ " thread. Tighten counter nut and indic ator with two wrenches.

Step 3

1. Place the two 0 -rings in the grooves in the bottom of the adapter. Then place the adapter on the actuator top. The small 0 -ring must be positioned over the air hole on the actuator.
2. Fasten the adapter with the four $5 / 16^{\prime \prime}$ Allen screws.

Step 4

Mount the base on the adapter in the position needed (can be rotated 120° in both directions). Note that one of the screw towers on the adapter has a guide recess (see \star on drawing).

The drawing and the parts list include all items.

Parts List

Pos.	Denomination
1 a	Shell
1 b	Shell
2	O-ring, NBR
3	Screw
4	Washer
5	Sensor unit
6	Solenoid valve
7	PT screw
8	Base
9	O-ring, NBR
10	Air fittings
11	Blow-off valve
12	Thread plug, PG7
13	Cable gland, PG11 4-10 mm
14	Pressure control valve
15	Adapter
16	O-ring
17	O-ring
18	Allen screw
19	Special X-ring
$20 a$	Indication pin
$20 b$	Indication pin
21	O-ring, EPDM
24	Air fitting incl. O-ring

Spare Parts

Denomination	Item number
Sensor unit DeviceNet 11-25 VDC 9612-5627-04	
Solenoid valve 3/2, 8 VDC $\ldots .9611-99-3748 ~$	
Solenoid valve 5/2, 8 VDC $.99-3749 ~$	

Exploded Drawing

The drawing and the parts list include all items.

Parts List

Pos.	Denomination
1	Shell
3	Screw
4	Washer
5	Sensor unit
6	Solenoid valve
7	PT screw
8	Base
9	O-ring, NBR
10	Air fittings
11	Blow-off valve
12	Thread plug, PG7
13	Cable gland, PG11 4-10 mm
14	Pressure control valve
15	Adapter
16	O-ring
17	O-ring
18	Screw
19	Retainer
20	O-ring
21	O-ring, EPDM
22	Indicator pin
23	Nut
26	Air fitting incl. O-ring

Note! This is the basic design.
The clearance should be approximately:

```
ø 225 x 250 (SRC NC,SMP-SC/-BC/-TO, Unique,
```

 Koltek MH, SBV, AMP)
 $ø 225 \times 320$ (SRC NO)
ø 225×300 (LKB (LKLA-T))

Spare Parts

Denomination

1/4" Air connec.

Sensor unit DeviceNet 11-25 VDC 9612-5627-04

Solenoid valve $3 / 2,8$ VDC
9611-99-3748
Solenoid valve $5 / 2,8$ VDC
9611-99-3749
Air fitting incl. O-ring, 1/4"
9611-99-3434

Exploded Drawing

How to contact Alfa Laval
Contact details for all countries are
continually updated on our website.
Please visit www.alfalaval.com to
access the information direct.

